
Analyzing the existence of magnetoroton excitations in magnetized quantum wires

Manvir S. Kushwaha*
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan

�Received 19 June 2008; revised manuscript received 29 September 2008; published 16 October 2008�

We report on the theoretical investigation of magnetoplasmon excitations in a quantum wire characterized by
a confining harmonic potential and in the presence of a perpendicular magnetic field. The problem involves two
length scales: l0=�� /m��0 and lc=�� /m��c, which characterize the relative strengths in the interplay of
confinement and the magnetic field. We embark on the charge-density excitations within a two-sub-band model
in the framework of Bohm-Pines’ random-phase approximation. The main focus of our study is the �inter-sub-
band� magnetoroton excitation which changes the sign of its group velocity twice before merging with the
respective single-particle continuum. We analyze the terms and conditions within which the magnetoroton
excitation persists in the quantum wires. It is suggested that the electronic device based on such magnetoroton
modes can act as an active laser medium.
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Scientists have long thought the way the basic notions
would change in systems with dimensionality different from
that of the three-dimensional �3D� space we are so accus-
tomed to. The discovery of the quantum Hall effects1 is
known to have spurred the efforts to see the consequent
changes with the reduction in the system’s dimensionality
from three to two, two to one, and one to zero. These
are, respectively, the quasi-two-dimensional, quasi-one-
dimensional �Q1D�, and quasi-zero-dimensional semicon-
ductor structures in which the charge carriers are constrained
in one, two, and three dimensions or are allowed free motion
in two, one, and zero dimensions.2 The middle of this rain-
bow represents the so-called quantum wires or �more realis-
tically� quasi-one-dimensional electron gas �Q1DEG� for
broader range of physical understanding.

Much of the fundamental theoretical understanding of
electron dynamics in one-dimensional �1D� systems have
emerged from the work on the Tomonaga-Luttinger liquid
model �TLLM�.3 The TLLM makes some of the drastic sim-
plifying assumptions, which allow one to solve the interact-
ing problem completely. One of the surprising results that is
obtained from the solution of TLLM is that even the smallest
interaction results in a disappearance of the Fermi surface,
leading to a system which is describable as a non-Fermi
liquid—in the sense that the elementary excitations are very
different from those of the noninteracting system. Therefore,
one would expect that the experimental properties of the
semiconductor quantum wires should be quite different from
any predictions based on the assumption that a one-
dimensional electron gas �1DEG� is a Fermi liquid. Yet, the
contrary observations have been rather firmly established.4

An early motivation behind the proposal of semiconduc-
tor quantum wire structures was the suggestion5 that 1D
k-space restriction would severely reduce the impurity scat-
tering, thereby substantially enhancing the low-temperature
electron mobilities. As a result, the technological promise
that emerges is the route to faster transistors and optoelec-
tronic devices fabricated out of the quantum wire structures.
Research interest burgeoned in quantum wires owes not only
to their potential applications, but also to the fundamental
physics involved. For instance, they have offered us an ex-

cellent, unique opportunity to study the real 1D Fermi gases
in a relatively controlled manner.2

The present Brief Report aims at investigating the charge-
density excitations in a realistic quantum wire within a two-
sub-band model in the framework of Bohm-Pines’ random-
phase approximation �RPA�.2 The main focus of our study is
the �inter-sub-band� magnetoroton excitation which changes
the sign of its group velocity twice before merging with the
respective single-particle continuum. We analyze the terms
and conditions within which the magnetoroton excitation
persists in the quantum wires. A roton is an elementary ex-
citation whose dispersion relation shows a linear increase
from the origin, but exhibits first a maximum, and then a
minimum in energy as the momentum increases. Excitations
with momenta in the linear region are called phonons; those
with momenta near the maximum are called maxons; and
those with momenta close to the minimum are called rotons.

A roton mode in 3D superfluid 4He was empirically de-
rived within the two-fluid model by Landau,6 and its reliable
theory was developed and refined by Feynman.7 In two-
dimensional electron gas �2DEG�, the magnetoroton mini-
mum was obtained in the fractional quantum Hall effect re-
gime within the framework of single-mode approximation
�SMA� by Girvin et al.8 In Q1DEG, the magnetoroton mode
was predicted within the framework of Hartree-Fock ap-
proximation in 1992 �Ref. 9�, and it was soon verified in the
resonant Raman scattering experiments.10 Here, we are con-
cerned with the magnetoroton �MR� excitation in a 2DEG in
the presence of a confining harmonic potential �oriented
along the x direction� and an applied perpendicular �to the
x-y plane� magnetic field B. The resultant system—a realistic
Q1D quantum wire with free propagation along the y direc-
tion and magnetoelectric quantization along x—is character-
ized by the eigenfunction

�n�ky� =
1

�Ly

eikyy�n�x + xc� , �1�

where �n�x+xc� is the Hermite function, and the eigenenergy
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�nky
= �n +

1

2
���̃ + �2ky

2/�2mr� , �2�

where Ly, n, xc=ky�ld
4 / lc

2�, lc=�� / �m��c�, ld=�� / �m��̃�, and
mr=m���̃2 /�0

2� are, respectively, the normalization length,
the hybrid magnetoelectric sub-band �HMES� index, the cen-
ter of the cyclotron orbit with radius ld, the magnetic length,
the effective magnetic length, and the renormalized effective
mass. Here the hybrid frequency �̃=��c

2+�0
2. The effective

magnetic length ld refers to the typical width of the wave
function and reduces to the magnetic length lc if the confin-
ing potential is zero �i.e., if �0=0�. In the limit of a strong
magnetic field, the renormalized mass mr becomes infinite
and the system undergoes a crossover to the two-dimensional
electronic system �2DES�, and hence, the Landau degeneracy
is recovered.

For the illustrative numerical examples, we focus on the
narrow channels of the In1−xGaxAs system. We compute the
magnetoplasmon excitations in a Q1DEG within a two-sub-
band model in the presence of a perpendicular magnetic field
B at T=0 K. We do so by examining the influence of several
parameters involved in the analytical results. These are, for
instance, the 1D charge density n1d, characteristic frequency
of the harmonic potential �o, and the magnetic field B. The
material parameters used are: effective mass m�=0.042m0,
the background dielectric constant �b=13.9, 1D charge den-
sity n1D=1.0�106 cm−1, confinement energy ��0
=2.0 meV, and the effective confinement width of the har-
monic potential well, estimated from the extent of the Her-
mite function, weff=40.19 nm. Notice that the Fermi energy
�F varies in the case where the charge density �n1D�, the
magnetic field �B�, or the confining potential ���0� is varied.

The magnetoplasmon spectrum within a two-sub-band
model using the full RPA was illustrated in Fig. 9 of Ref. 11.
We call attention to the most curious part of that excitation
spectrum—the existence of the inter-sub-band collective
�magnetoplasmon� excitation �CME� �henceforth referred to
as the MR�, which changes the sign of its group velocity
twice before merging with the respective single-particle ex-
citation �SPE�. The interesting thing about its very occur-
rence in Q1DEG �Ref. 11� leads us to infer that you do not
have to overplay with the theory, as was done in Refs. 12 and
13, which both missed to observe this MR mode. The said
magnetoroton excitation dispersion in the energy–wave-
vector space is illustrated in Fig. 1. Each MR mode corre-
sponds to a given magnetic field and for the fixed values of
the charge density �n1D� and the confining potential ���0�.
The important feature noticeable from Fig. 1 is that as the
magnetic field �B� is increased the maxon maximum shifts to
the higher energy, whereas the roton minimum first observes
an increase and then �after a certain value of B, here B
=1.5 T� a decrease in energy.

Figure 2 shows the MR dispersion for various values of
the charge density and for the given values of the magnetic
field and the confinement energy. Unlike the variation in B
�Fig. 1�, Fig. 2 makes it evident that there is a systematic
trend in the behavior characteristics of the MR as the charge
density varies. To be specific, both the maxon maximum and
roton minimum gradually shift to the higher energy �and

longer wavelength� with increasing charge density. It is also
noteworthy how the roton minimum becomes deeper �from
shallower� with increasing n1D.
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FIG. 1. �Color online� MR dispersion plotted as energy �� vs
reduced wave vector q /kF for various values of the magnetic field
�B� for the given values of n1d and ��0.
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FIG. 2. �Color online� MR dispersion plotted as energy �� vs
reduced wave vector q /kF for various values of the charge density
�n1D� for the given values of B and ��0.
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Figure 3 depicts the MR dispersion for various values of
confinement energy and for the given values of the charge
density and the magnetic field. It is interesting to notice here
that the roton minimum observes a systematic shift to the
higher energy �and longer wavelength� with increasing con-
finement potential. On the other hand, the maxon maximum
first observes an increase and then �after a certain value of
��0, here ��0=2.1 meV� a decrease in energy with increas-
ing confinement potential. However, the maxon maximum
always tends to attain a shorter wavelength with increasing
��0. A distinctive feature of Fig. 3 �as compared to Figs. 1
and 2� is that the MR mode here starts �at the origin� within
a relatively narrower energy range even though the confine-
ment potential varies. There is a common feature observed
�not shown here� in all Figs. 1–3: every MR mode in the
short wavelength limit merges with the upper branch of the
respective �inter-sub-band� SPE.

Figure 4 illustrates the group velocities of the MR excita-
tions �plotted in Fig. 1� as a function of the reduced wave
vector q /kF. Notice that the dimension of the group velocity
is sec−1 because we define Vg=�� /�Q, with Q=q /kF as the
reduced wave vector. One can easily notice that the inter-
sub-band CME attains its magnetoroton shape only at B
�1.0 T for which values the Vg curves cross the zero twice:
the first for the maxon and the second for the roton. As such,
there is a minimum �threshold� value of B �i.e., Bmin� below
which the MR does not exist.

Figure 5 shows the density of excitation states �DOES� of
the MR mode versus the energy for several values of the
magnetic field and for the given values of n1d and ��0. An
interesting feature that this figure dictates is that both maxon

and roton are the higher density of excitation states.
In other words, the group velocity of the inter-sub-band

CME becomes negative between the maxon maximum and
roton minimum. An interesting feature of this aspect is that it
leads to tachyon-like �superluminal� behavior without one
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FIG. 3. �Color online� MR dispersion plotted as energy �� vs
reduced wave vector q /kF for various values of the confinement
energy ���0� for the given values of n1d and B.
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FIG. 4. �Color online� The group velocities of the MR excita-
tions plotted in Fig. 1 as a function of the reduced wave vector q /kF

for several values of B and for the given values of n1d and ��0.
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FIG. 5. �Color online� The density of excitation states �DOES�
of the MR excitations plotted in Fig. 1 as a function of energy ��
for several values of B and for the given values of n1d and ��0.
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having to introduce negative energies. The interest in nega-
tive group velocity is based on anomalous dispersion in a
gain medium, where the sign of the phase velocity is the
same for incident and transmitted waves and energy flows
inside the gain medium in the opposite direction to the inci-
dent energy flow in vacuum. The insight is that demonstra-
tion of negative group velocity is possible in media with
inverted populations so that gain instead of absorption occurs
at the frequencies of interest. A medium with an inverted
population has the remarkable ability of amplifying a small
optical signal of definite wavelength; i.e., it can serve as an
active laser medium. The situation is analogous to the super-
lattices where the crystal can exhibit a negative resistance: it
can refrain from consuming energy like a resistor and instead
feed energy into an oscillating circuit.

In summary, we have investigated extensively the magne-
toroton excitations in the quantum wires within a two-sub-
band model in the framework of the full RPA. The existence
of the MR mode in quantum wires is solely attributed to the
applied perpendicular magnetic field. We have studied dis-
persion characteristics of the MR as a function of several

important experimental parameters such as the magnetic
field, the charge density, and the confinement potential. It is
observed that there is a minimum �threshold� value of the
magnetic field �Bmin� below which this MR does not exist.
The roton minimum is the mode of higher density of excita-
tion states. It is worth mentioning that roton features are
among the most significant manifestations of the many-
particle interactions. They arise from the interplay between
direct and exchange terms of the electron gas, and the depth
of the minimum is determined by the strength of the ex-
change vertex corrections. As such, incorporating the many-
body effects adequately should give a better insight into the
propagation of the magnetoroton mode. We suggest that the
electronic device based on such magnetoroton modes can act
as an active laser medium.
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